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Abstract. The theory of electron correlation in semiconductor quantum dots is reviewed with
emphasis on the physics of dots in strong magnetic fields. A brief survey of dot fabrication and
experimental results is given, the quantum mechanics of small numbers of interacting electrons in
a dot is discussed and the special values of angular momentum quantum number that the ground
state is allowed to have, or magic numbers, are introduced. These numbers are selected because of
the symmetry properties of the ground state and the symmetry is particularly evident in the limit
of strong magnetic field if the system is examined in a moving reference frame. Physically, the
system in this limit can be pictured as an electron molecule that rotates and vibrates in the dot, and
this is the quantum dot analogue of a Wigner crystal. This is illustrated with a detailed treatment
of a two-electron dot which can be studied without resorting to any special concepts of molecular
physics. Next, the molecular physics concepts, such as the Eckart reference frame, needed to deal
with rotational–vibrational motion of larger numbers of electrons are introduced. The physics of
dots with more than two electrons is then described, including the evolution of magic numbers with
electron number and the implications of symmetry. Finally, the extension of these ideas to larger
systems and coupled dots is briefly discussed. Quantum dots in strong magnetic fields provide a
unique opportunity to realize what could be called electron molecular physics, and some possible
ways of probing the system experimentally are also proposed.

1. Introduction

Semiconductor quantum dots are nanostructures that can confine a few electrons in three
dimensions. They are currently under intense study because they exhibit rich and elegant
physics [1, 2] and have potential applications such as lasers and memory devices [3–6]. The
importance of electron correlation in dots has been appreciated since the pioneering work of
Bryant [7] who showed that ordered states should occur in dots with large electron spacing.
These states are the few-electron analogue of a Wigner crystal and they have been called
Wigner or electron molecules [8]. Similar states were found in a three-electron system during
numerical studies of the fractional quantum Hall effect [9] and should generally occur in dots
in a strong magnetic field [10]. These states have not yet been probed experimentally but
advances in experimental technique could make them accessible soon and it seems timely
to review their properties. This is the purpose of the present work which is a review of dot
physics, with emphasis on electron molecular states in strong magnetic fields.

The electron molecular states should occur under similar conditions to those required for
a Wigner crystal in a bulk system. The bulk Wigner crystal occurs in the low-electron-density
limit [16], and the 2D Wigner crystal is particularly relevant because the vertical confinement in
typical dots is much stronger than the lateral confinement. The quantum dot analogue of the 2D
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Wigner crystal is a large dot that contains a few electrons. The physics of this system has been
explored in some detail [8, 11–14] for various dot geometries. It is believed that a transition
from a liquid-like state to an ordered, molecular state occurs as the electron density decreases
and the transition is predicted to occur at a surprisingly small electron separation [15]. Wigner
crystallization in bulk 2D systems is enhanced by the application of a strong magnetic field in
the perpendicular direction [16]; for example the 2D Wigner crystal is not observed in GaAs
at zero field but does occur in the strong-field limit. The reason for this is that bulk single-
electron states tend to be localized in the strong-field limit and this enhances the tendency
to form ordered states when the electrons interact. Similarly, molecular states can occur in
relatively small dots in the presence of a strong magnetic field. This could be advantageous
for probing electron molecular states experimentally: a small dot is less likely to be affected
by impurities than a large one.

The present work opens with a brief introduction to dots which covers the principles of
dot fabrication and electron confinement, details the standard theoretical model of a dot and
summarizes experimental techniques (section 2). The model has the electrons moving in two
dimensions and confined laterally by a parabolic potential. This simple approach describes
dot physics rather well and the reasons for this are also explained in section 2. The quantum
mechanics of interacting electrons in a parabolic potential is described in section 3. First,
the single-electron states are introduced and their properties are described, with emphasis
on the way in which the angular momentum of the states and the magnetic field affect dot
physics. Next, the quantum states of interacting electrons are discussed and the magic angular
momentum quantum numbers are introduced. These are the only angular momenta the ground
state can have and, as the magnetic field increases, the ground state undergoes a series of
transitions in which its angular momentum goes through the sequence of magic values. The
magic number sequence is characteristic of the electron number and total spin. As explained
in section 3, the reason for this is a tendency for correlated electron states to centre on the
classical minimum-energy configuration. As the magnetic field increases the quantum states
become strongly localized about the classical minimum and the system can be pictured as an
electron molecule.

This idea is developed quantitatively in the second part of this work. In contrast to a Wigner
crystal, where the equilibrium positions of the electrons are fixed, the electron molecule both
rotates and vibrates. It is not possible to separate the rotation and vibration completely but it is
possible to find a reference frame in which the rotational–vibrational coupling is minimized.
This frame is the Eckart frame that is normally used to study real molecules but the Eckart frame
treatment of a many-electron dot is complicated by the need to deal with Coriolis forces and
the need to construct anti-symmetric states from the rotational–vibrational states. However,
two-electron molecular states can be treated without resorting to the Eckart frame and this is
done in section 4 to introduce the electron molecular picture quantitatively and demonstrate
that it is very accurate. The Eckart frame theory and the anti-symmetrization problem are then
discussed in section 5 where it is shown that the low ground-state energy of the magic number
states emerges naturally when Eckart frame rotational–vibrational states are anti-symmetrized.

The final part of this work is concerned with the physics of few-electron molecules
(section 6). For up to six electrons, ground-state energies calculated within the molecular
picture agree with exact-diagonalization results to better than 1% and excitation energies to a
few per cent. For up to four electrons the physical picture of a state localized about the classical
minimum works very well. But for larger numbers of electrons there are competing classical
minima and this enriches the physics. For example, the six-electron system has both sixfold
and fivefold correlation and there are selection rules that determine which form of correlation
occurs in the ground state at a particular angular momentum. Thus molecular states can still
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occur despite the existence of competing minima. However, there are special angular momenta
at which both fivefold and sixfold correlation are allowed to occur. In this case the ground state
can be thought of as a mixture of fivefold and sixfold states and its nature is ‘liquid-like’ rather
than molecular. Remarkably, the mixing is only allowed to occur at the same odd-denominator
Landau level filling factors where quantum Hall liquids occur in macroscopic systems and it
is believed that similar mixing would occur in dots with more than six electrons. The physics
of larger systems is considered in section 7 and this section also includes a discussion of
the prospects for probing electron molecular states experimentally. An appendix details the
treatment of the two-electron classical system which is closely related to the treatment of the
two-electron quantum system.

Throughout this work the physics is illustrated with the authors’ numerical results for
GaAs dots (effective mass: m∗ = 0.067m0 withm0 the free-electron mass; dielectric constant:
ε = 12.4; effective g-factor: g∗ = −0.44). Some of the results have not been published
elsewhere.

2. Quantum dots

Semiconductor quantum dots are generally fabricated by applying a lateral confining potential
to a two-dimensional electron system [1, 2]. A modulation-doped quantum well or hetero-
junction is first grown to provide strong electron confinement in the growth direction, then
nano-fabrication techniques are used to obtain the lateral confinement. The simplest technique
is mesa etching, which results in a free-standing quantum dot [17], but an electrostatic confining
potential [18] is used to make the majority of dots. A popular approach is to deposit an insulating
cap above a two-dimensional system and cover the whole structure with a metallic gate. When
a negative bias is applied to the gate, a small number of electrons, say 1–100, can be confined
underneath the cap (figure 1, left-hand side). More recently, very high-quality dots have been
fabricated by a combination of mesa etching and electrostatic confinement in which a metallic
gate is deposited around a mesa-etched pillar [19] (figure 1, right-hand side). A number of
alternative lateral-confinement techniques are also used, such as systems of gates used without
a cap [20] and stressors deposited on the semiconductor surface [21]. In addition, there have
been proposals to confine electrons by spatially modulated magnetic fields [22–24] and dots
can be fabricated directly by self-organized growth [25].
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Figure 1. Schematic illustrations of typical electrostatic quantum dots. Left-hand side: capped
dot; right-hand side: pillar dot. The capped dot can be made either from a quantum well (as shown)
or from a heterojunction.

This review is particularly concerned with electrostatic dots which are defined by a
cylindrical pillar or a cap of square or circular shape. The lateral-confinement scale in these
dots is typically 50–100 nm, the associated confinement energy scale is around 2–4 meV and
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several groups have fabricated dots that can confine a few electrons or even just one electron.
The standard theoretical model of these systems is based on a number of approximations.
First, the electron motion is taken to be exactly two dimensional. This is reasonable because a
typical dot is constructed from a quasi-two-dimensional system in which the sub-band energy
spacing is large compared to the thermal energy kBT . Secondly, the potential is taken to be
cylindrically symmetric. This is always true for cylindrical dots and dots with circular caps but
it is also a good approximation for dots with square caps, for example those used for optical
studies [17]. This is because the confinement length is typically much smaller than the cap size
so the cap has only a small influence on the symmetry of the potential deep inside the dot where
the wave function is large. The third approximation is that the confining potential is parabolic.
This is again reasonable because a fairly large voltage, typically −1 V, is applied to the gate.
Thus the electrons are confined in a potential well whose depth is around 1 eV, large compared
to the typical energy scale. This means that the electron wave function is only large close to
the minimum of the well where the potential is parabolic. The final approximation is that the
electrons interact via a pure Coulomb interaction. In a real dot the electron–electron interaction
is usually screened (see the next paragraph) but the Coulomb approximation generally explains
the physics. Within the standard theoretical model, the Hamiltonian for electrons interacting
in a dot in a magnetic field, B, perpendicular to the dot plane is

H =
N∑
i=1

[
1

2m∗
(
pi + eA(ri )

)2
+

1

2
m∗ω2

0r
2
i

]
+

1

2

(
e2

4πεε0

) N∑
i=1

N∑
j=1
j �=i

1

|ri − rj | + g∗µBBSz (1)

where the first term is the one-electron term, the second term is the Coulomb interaction term
and the last term is the Zeeman energy. The z-component of the total spin is Sz, m∗ is the
effective mass, g∗ is the effectiveg-factor, ε is the dielectric constant and h̄ω0 is the confinement
energy. The system is axially symmetric, so it is convenient to use the symmetric gauge, and
the magnetic vector potential is A = (B/2)(k̂×r), where r is a position vector in the dot (x, y)
plane and k̂ is a unit vector in the z-direction. Dots of lower symmetry can be fabricated [26]
and studied theoretically with a model similar to the one described here [27–29].

The standard theoretical model is believed to account for the general physics of dots but
modifications of the confinement and interaction potentials probably need to be considered
to understand experimental data in fine detail [30–32]. The best evidence for the validity of
the model is that far-infra-red (FIR) absorption spectra are found to be almost independent
of the number of electrons in a dot [17, 18, 33, 34]. This is a consequence of the generalized
Kohn theorem [35, 36]. Essentially, FIR radiation, whose wavelength is much larger than the
dot size, can only affect the motion of the centre of mass of the electrons, but in a parabolic
confining potential the centre-of-mass (CM) and relative (RM) motion decouple. Thus only
CM excitations can be observed in a FIR experiment and their energy depends only on the
charge-to-mass ratio of the CM so is independent of the electron number. The observed
excitation energies have some small splittings which have been attributed to small deviations
from parabolic confinement [37, 38]. It is also possible that small deviations from 2D motion
could affect FIR spectra, particularly in devices with a small sub-band gap [32]. There is less
experimental information about the form of the interaction potential in real dots but it is likely
that there are screening effects caused by the metallic gates used to define the dot. This makes
the interaction dipole-like at long range [39, 40] and in addition the effective interaction at
short range is affected by the finite extent of the wave function in the growth direction [31,32].

Experimental studies of dots involve optical spectroscopy, transport measurements and
investigations of dot charging. The first optical studies were concerned with FIR absorption
spectroscopy of dot arrays but spectroscopy of single dots is now possible [41] and there
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is increasing interest in Raman spectroscopy [42]. Transport and charging studies make
use of the Coulomb blockade to control tunnelling of electrons into and out of a dot [43].
In the simplest case, dots used for these studies resemble those shown in figure 1. The
dot is coupled to an electron source whose electrochemical potential is µS and a drain
whose electrochemical potential is µD . The electrochemical potential of the N -electron
dot µ(N + 1, V ) depends on both the electron number and the gate voltage V and, at zero
temperature, µ(N + 1, V ) = E0(N + 1, V ) − E0(N, V ) where E0(N, V ) is the ground-state
energy. In this non-equilibrium situation, electron tunnelling into and out of the dot is impeded
unless µS � µ(N + 1, V ) � µD . This resonance condition can be set for different values of
N by changing the voltage of the gate, so peaks occur in the dot conductance as a function
of gate voltage [19, 20, 44–50]. Dots with more than one gate electrode can also be made
and in this case each gate voltage can affect transport through the dot. As an alternative
to transport, an elegant way of probing the resonance condition is to use an integrated dot
and electrometer to measure the charge in the dot directly [51, 52]. Transport and charging
studies have become quite sophisticated and recent developments include the study of photon-
assisted single-electron tunnelling [53, 54] and evidence for charge redistribution associated
with changes in the electronic state of a dot [55].

The experimental studies done to date have provided convincing evidence that single
electrons can be confined and manipulated in quantum dots. In addition, the observed physics
is in agreement with the predictions of the 2D parabolic model, although a detailed analysis of
experimental data for a specific device, including corrections to the confinement and interaction
potentials, remains to be done. Further details can be found in various reviews [34,43,56–60]
and texts [1, 2]. In contrast, the high-field regime described here should contain rich and
unexplored physics that is challenging to study experimentally.

3. Quantum mechanics of electrons in a dot

3.1. Single-electron states

The eigenstates of non-interacting electrons in a 2D parabolic potential were first investigated
by Fock [61] and Darwin [62] in early studies of diamagnetism. In the quantum dot literature
these states are known as the Fock–Darwin states and they have the form

ψnl(r) = 1√
2πλ2

[
n!

(n + |l|)!
]1/2 (

r√
2λ

)|l|
L|l|
n (r

2/2λ2) exp(−r2/4λ2) exp(−ilφ) (2)

with energies given by

Enl = (2n + 1 + |l|)h̄# − lh̄ωc/2 (3)

(excluding the Zeeman energy). Here l and n, respectively, are angular momentum and
radial quantum numbers, L|l|

n is an associated Laguerre polynomial, #2 = ω2
0 + ω2

c/4 and
ωc = eB/m∗ is the cyclotron frequency. The length parameter, λ, given by λ2 = h̄/(2m∗#)
sets the overall length scale. This parameter depends on the magnetic field so the Fock–Darwin
states become the states of a 2D harmonic oscillator in the zero-field limit and the Landau states
of a free electron in the ultra-strong-field limit. Physically, the states are localized on rings of
width ∼λ, with a radius, R, dependent on the quantum numbers l and n and also on λ. Strictly
speaking, R is determined by the position of the maxima of |ψnl|2 but a good approximation
is to take R2 to be the mean square radius of ψnl . Thus

R2 = 〈n, l|r2|n, l〉 = 2λ2(2n + |l| + 1) (4)
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andR increases with angular momentum. In addition, the radius decreases with magnetic field
because λ approaches the cyclotron length,

√
h̄/(eB), in the strong-field limit.

Dot physics is strongly influenced by the magnetic field and angular momentum depend-
ence of the Fock–Darwin states. For example, the Fock–Darwin energies as a function of field
are shown in figure 2 for a GaAs dot with h̄ω0 = 2 meV. Typically, the energies first decrease
with field and then increase linearly in the asymptotic field regime. The initial decrease reflects
the compression of the wave function induced by the magnetic field, which forces the wave
function to exist in a region of lower potential energy. As the field increases further, the zero-
point energy of the cyclotron motion becomes dominant and the levels coalesce into Landau
levels of energy (NL + 1/2)h̄ωc, where the Landau quantum number NL = n + (|l| − l)/2.
However, when the field is finite but strong, each Landau level in a dot is broadened and the
states with larger l have larger energy because they have a larger radius and hence exist in a
region of larger potential.
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Figure 2. Fock–Darwin energy levels as a function of magnetic field for h̄ω0 = 2 meV. The levels
shown are the lowest 200 at B = 0 T.

3.2. Interacting electron states

Electron correlation in dots has been studied with various methods, and exact diagonalization
of the few-electron Hamiltonian has been particularly reliable and informative. Small 2D
systems in a magnetic field with [9] and without [63] a confining potential were first investigated
during early studies of the fractional quantum Hall effect. Subsequently, Bryant [7] pioneered
exact-diagonalization studies of electrons interacting in quantum boxes and then Maksym and
Chakraborty [36] investigated interactions in a 2D parabolic dot in a perpendicular magnetic
field. Other methods for studying correlation enable larger electron numbers to be treated
than is possible with exact diagonalization, at the expense of making some approximations
whose validity is not always clear. For example, the Hartree–Fock method [64–66] has been
used for dots in zero and non-zero magnetic field and the density functional method [67] has
been used to study dots in zero magnetic field. Current density functional theory [68] is a
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promising approach to studying large interacting systems in the presence of a magnetic field.
Finally, an alternative to numerical studies is to find special interaction potentials for which
the Schrödinger equation is analytically soluble [57].

The magnetic field dependence of the ground-state energy is particularly interesting and
relevant to dot physics. For example, results obtained by exact diagonalization are shown in
figure 3 for the case of three spin-polarized interacting electrons and h̄ω0 = 2 meV. The figure
shows both the total ground-state energy (solid line) and its decomposition into one-electron,
Coulomb and Zeeman components which was obtained by taking the ground-state expectation
value of the corresponding terms in equation (1). While the total energy is almost smooth
on the scale of the figure, the one-electron and Coulomb components change discontinuously.
These discontinuities reflect the influence of the magnetic field on the extent of the wave
function. The increasing field reduces the system size and hence increases the Coulomb
energy. Just as in the one-electron case (equation (4)), the system can expand by increasing
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Figure 3. Ground-state properties as a function of magnetic field for three spin-polarized electrons
with h̄ω0 = 2 meV. Upper frame: ground-state energy together with one-electron, Coulomb and
Zeeman contributions; lower frame: effective dot radius obtained by numerically integrating the
electron density.
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the total-angular-momentum quantum number, J . This decreases the Coulomb energy but
only happens at certain critical magnetic fields where the decrease in Coulomb energy can
compensate for the increase of one-electron energy that results from the increase in J . The
cycle repeats with increasing B and this leads to the oscillations shown in the figure. The
abrupt changes in the orbital angular momentum are accompanied by abrupt changes in the
system size (figure 3, lower frame). A convenient measure of the size is the radius of the circle,
Reff , that contains 95% of the charge. This is given by the solution of the equation

2π
∫ Reff

0
ne(r)r dr = 0.95N

where ne(r) is the electron density [39]. Abrupt increases in Reff clearly coincide with a
transition to a new ground state. The increase of angular momentum with magnetic field is
essentially a classical effect while the abruptness of the change inReff is a quantum mechanical
effect which derives from angular momentum quantization (see section 4 and the appendix).
Abrupt changes in dot size are also predicted by an approximate treatment due to Chamon and
Wen [69] and it is likely that the effect has been seen in recent experimental work [55].

The magnetic field dependence of the ground-state energy in figure 3 is typical for
electrostatic quantum dots containing small numbers of electrons. Extensive numerical
studies have shown that angular momentum transitions always occur and in addition there
are transitions in the total spin [70, 71]. The transitions are predicted to cause oscillations in
thermodynamic properties of dots such as the electronic heat capacity [36] and magnetization
[70, 71]. In addition, there is theoretical evidence that they affect transport [72, 73], lumin-
escence [74] and optical [37, 75–77] properties of dots and influence the chemical potential
[66, 78, 79]. It is likely that some of the transitions have been observed [52, 78].

3.3. Magic numbers

One of the most interesting aspects of correlated ground states in dots, and one that is
particularly relevant to the present work, is that only certain combinations of the total orbital
angular momentum and total spin are allowed to occur. For example, the ground-state angular
momentum of three spin-polarized electrons is always a multiple of 3. The total energy of this
system as a function of angular momentum (excluding the small Zeeman term) is shown in
figure 4. Each point gives the lowest energy at a particular J -value and it is convenient to call
the corresponding state ‘a ground state’. The state of lowest total energy, which corresponds to
the global minimum of the ground-state energy as a function of J , will be called ‘the absolute
ground state’ or just ‘the ground state’ when the meaning of this term is clear. The two frames
in figure 4 show the total energy at field points on either side of the transition from J = 6 to
J = 9 in figure 3. In each case, the one-electron contribution increases almost linearly with
J while the Coulomb contribution decreases, roughly like 1/

√
J . Thus the total energy as

a function of J has a minimum. As the magnetic field increases, compression of the wave
function induced by the magnetic field drives the minimum to higher J (compare the top
and bottom frames) and this is consistent with the physical arguments given in section 3.2.
However, the total energy actually has the form of some subsidiary minima superimposed on a
broad minimum and the global minimum always coincides with one of the subsidiary minima
(see the arrows in figure 4). These minima have period 3 and the angular momentum of the
absolute ground state is always a multiple of 3 for three spin-polarized electrons. In general,
the absolute-ground-state angular momentum depends on both the electron number and the
spin quantum number, S, that gives the total spin, S2 = S(S + 1), but is independent of the z-
component of the spin, Sz. For instance, the absolute-ground-state J -value of the four-electron
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Figure 4. Energy as a function of total angular momentum for three spin-polarized electrons with
h̄ω0 = 2 meV. The one-electron energy, the Coulomb energy and the sum of these energies are
shown. The points give the lowest energy for each value of total angular momentum. The lines are
to guide the eye. The arrows indicate the minimum total energy.

system satisfies J ≡ 2 mod 4 when the system is spin polarized (S = 2) and J ≡ 0 mod 2
when the system is spin unpolarized (S = 0). The allowed absolute-ground-state angular
momenta are known as the magic angular momentum numbers and investigations of why the
absolute-ground-state angular momentum is restricted to one of the magic values have led to
some very interesting physics.

The earliest approach to explaining the origin of the magic numbers was an argument based
on exchange energy [70]. In the high-field limit, where Landau level mixing is negligible, the
ground state is made up of Slater determinants for the zeroth Landau level. For spin-polarized
electrons the Slater determinant for the zeroth Landau level that has the largest exchange energy
is the one where all the electrons are adjacent in angular momentum space. This configuration
can only occur at certain values of the total angular momentum and they are generally magic
ones. For example, in the three-electron case one way of making the l-values adjacent is to
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choose l = 1, 2, 3 which gives J = 6, one of the magic numbers of the three-electron system.
The argument is similar to Hund’s first rule in that the state of lowest total energy is the one
where exchange effects are the largest. For larger numbers of electrons the large exchange
energy that occurs when all the electrons are adjacent does not compensate for the larger
Hartree energy and in this case the favourable configurations have N − 1 adjacent electrons
with one electron in an l = 0 state. For example, l = 0, 4, 5, 6, 7, 8 gives J = 30, one of
the magic numbers for six spin-polarized electrons. Numerical calculations show that these
special configurations tend to occur in the ground state with high probability.

In more recent approaches symmetry has been used to connect favourable electron
correlation with particular angular momentum values. The classical minimum-energy con-
figuration of a few point charges in a parabolic potential is highly symmetric. For example,
the minimum-energy configuration of three classical point charges is an equilateral triangle, or
a rotating equilateral triangle if the system has non-zero angular momentum. It is reasonable
to suppose that the quantum ground state is localized around the classical minimum but this
is only compatible with the Pauli principle when the angular momentum is magic. In other
words, the magic angular momenta are the only ones for which an anti-symmetric state is
allowed to have correlations with the same symmetry as the classical energy minimum.

To determine the magic numbers it is necessary to find the angular momenta at which
particular forms of correlation are allowed to occur. In early work on the three-electron
spin-polarized system this was done by constructing a system of coordinates in which cyclic
permutations and rotations are equivalent [10, 74]. Using these coordinates it is possible to
show [10] that anti-symmetric ground states can only have maxima with threefold symmetry
when the total angular momentum is a multiple of 3. A simpler argument, but one that
only gives a sufficient condition, is to consider the wave function for special values of the
electron coordinates [80]. For instance, consider the three-electron state ((r1, r2, r3) when
r1, r2, r3 in cyclic order form the corners of an equilateral triangle. ( is invariant under cyclic
permutations because they have even parity. But a cyclic permutation is equivalent to a 2π/3
rotation under which ( becomes exp(2π iJ/3)(. This is only compatible with the invariance
of ( when J is a multiple of 3, one of the magic numbers of the three-electron spin-polarized
system. The argument can be generalized to arbitrary electron numbers and spins [80–82].

The link between magic numbers and the symmetry of the classical minimum is best
verified by computing the pair correlation function [10, 81, 83, 84]. Axially symmetric quant-
ities, such as the electron density, are unsuitable for visualizing angular correlations. In
contrast, the pair correlation function has clear structure which gives insight into the physics.
The pair correlation function is proportional to the probability of finding an electron at position
r, given that there is one at position r0. Mathematically, it is given by

P(r, r0) = (2πλ2)2

N(N − 1)

〈∑
i �=j

δ(ri − r)δ(rj − r0)

〉
(5)

where the angled brackets denote an expectation value in a particular quantum state, usually
the ground state. The term ‘pair correlation function’, used here to refer to P(r, r0), has been
used elsewhere in the quantum dot literature but there seems to be no consistent terminology
throughout the physics literature; for example the term ‘two-particle correlation function’ is
also used to mean the same function. Figure 5 shows pair correlation functions for various
states of three to six spin-polarized interacting electrons in a dot with h̄ω0 = 4 meV. In each
case the black spot indicates r0 and r0 coincides with the maximum electron density. Part
(a) of the figure shows how the ground-state pair correlation functions of the three-electron
system depend on magnetic field. At zero field the pair correlation function has a crescent-
shaped maximum opposite the fixed electron but at higher fields it has two peaks and these
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B = 0T, J = 1

(a)

(b)

B = 5T, J = 3 B = 10T, J = 6 B = 20T, J = 12

N=5,J=22 N=5,J=25 N=6,J=35N=6,J=33N=4,J=26N=3,J=21

Figure 5. (a) Ground-state pair correlation functions at selected field points for three interacting
electrons with h̄ω0 = 4 meV. The total spin is 1/2 at B = 0 T and 3/2 at higher fields. The contour
plots cover an area of 13.3λ × 13.3λ. (b) Pair correlation functions for three to six interacting
electrons with h̄ω0 = 4 meV and B = 20 T (upper frames) and the corresponding classical
configurations (lower frames). The black spots in each contour plot indicate r0. The contour plots
cover an area of 12λ × 12λ.

peaks together with the fixed electron form the corners of an equilateral triangle. Part (b) (upper
frames) shows pair correlation functions, in the strong-field limit (B = 20 T), for various states
of three to six spin-polarized interacting electrons. The form of the classical minimum-energy
configuration is also shown (lower frames) for each electron number. Equilateral-triangular
symmetry occurs for three electrons and more general forms of symmetry occur for larger
electron numbers. The ground state of the four-electron system has square symmetry. In
the case of five electrons the ground state has pentagonal symmetry (J = 25) but there are
excited states which have square symmetry with one peak at the centre of the square (J = 22).
For six electrons both sixfold (J = 33) and fivefold (J = 35) ground states are possible,
while for seven electrons sixfold and sevenfold symmetry occurs (not shown; see [81, 83]).
In each case the symmetry coincides with the symmetry of the classical minimum-energy
configuration [85].

A radically different approach to the origin of the magic numbers is an interpretation in
terms of composite fermions [87]. A composite fermion consists of an even number of magnetic
flux quanta bound to an electron [88] and magic numbers are identified by considering how
composite-fermion Landau levels are occupied. This leads to an approximate wave function
that is used to approximate the total energy. The magic numbers correspond to compact
occupation of the composite-fermion Landau levels. For N � 5 the composite-fermion
approach gives the same magic numbers as the approaches based on symmetry. It also agrees
well with the symmetry approach for six and seven electrons, although some discrepancies
have been reported [81]; for example the composite-fermion approach does not predict the
magic numbers J = 40 and J = 50 of the six-electron system. There are indications that the
validity of the composite-fermion approach for bulk systems could be a consequence of the
fact that a flux generates a ‘correlation hole’ which mimics the true one [88] and this may also
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justify its validity for dots, but the issue has not yet been investigated.
The approaches based on exchange energy and symmetry are fairly consistent with each

other and the link between them is the pair correlation function. The pair correlation functions
for the special configurations that have adjacent occupations in angular momentum space can
be shown [83] to have the same ring or centred-ring form as the exact pair correlation functions
shown in figure 5. Thus it is entirely reasonable that these configurations should occur with
high probability in the exact ground state and the angular momenta of these configurations are a
good indicator of the ground-state correlations having the symmetry of the classical minimum.
These issues have also been investigated in recent work by Ruan and Cheung [89]. The relation
of the composite-fermion approach to the other approaches is less clear but the good agreement
of all three approaches suggests that there is a link. It is likely that the composite-fermion
construction results in a ground state with correlations that have the symmetry predicted by
the other approaches but the mechanism that could lead to this is still an open question.

3.4. The limit of strong magnetic field

The pair correlation functions shown in part (a) of figure 5 acquire very sharp peaks as the
magnetic field increases and extensive numerical studies have shown that this is generally true
[83]. This suggests that the ground state in the strong-field limit is strongly localized about the
classical potential minimum and the system may be pictured as an electron molecule [83,84]. A
similar picture has been proposed for the state of a few electrons in a higher Landau level when
the lower Landau levels are completely full [90]. The molecular picture provides an intuitive
way of understanding the physics in the strong-field limit. Within this picture, approximate
eigenstates found from a harmonic expansion of the Hamiltonian give the low-lying energy
spectrum accurately and lead to all the known magic numbers. The remainder of this article
is concerned with developing these ideas.

4. Two interacting electrons

The two-electron system is sometimes called quantum dot helium and is the simplest example
of electron correlation in quantum dots. It has been studied extensively by exact-diagonal-
ization [71], Hartree–Fock [64,65] and analytic approximation methods [91,92]. In addition,
exact analytic treatments are available [93, 94]. This section is concerned with one particular
approximation which illustrates the molecular nature of the system in the large-angular-
momentum limit.

4.1. Quantum ground states

The best way to study the two-electron system is to use CM and RM coordinates defined by
R = (r1 + r2)/2 and r = (r1 −r2)/2 respectively, where r1 and r2 are the individual electron
coordinates. Since A is linear in coordinates and r2

1 + r2
2 = 2(R2 + r2), the Hamiltonian

separates into

H = HCM + HRM (6)

where

HCM = 1

4m∗
(
pCM + 2eA(R)

)2
+m∗ω2

0R
2 (7)

HRM = 1

4m∗
(
pRM + 2eA(r)

)2
+m∗ω2

0r
2 +

e2

8πεε0r
(8)



Molecular aspects of electron correlation in quantum dots R311

and the momenta are pCM = −ih̄∇R and pRM = −ih̄∇r. The eigenstates of the two-
electron system are easy to study because of this separation into a sum of one-electron
Hamiltonians. For larger numbers of electrons such a drastic simplification does not occur and
the transformation to CM and RM coordinates is not even unique. One possible transformation,
which is particularly suitable for dealing with molecular states, is described in section 5.

The eigenstates, ψCM , of HCM are the Fock–Darwin states given by equation (2). The
eigenstates, ψRM , of HRM are eigenstates of the RM angular momentum and have the form
ψRM = exp(−iJRMχ)φ(r) where JRM is the RM angular momentum quantum number, χ is
a polar angle and φ(r) is the radial function for the RM motion. This function and the energy
of the RM motion, ERM , are determined by the equation

−h̄2

4m∗
1

r

d

dr

(
r

dφ

dr

)
+

[
L2

4m∗r2
+ m∗#2r2 +

e2

8πεε0r
+
ωcL

2

]
φ(r) = ERMφ(r) (9)

where, L = −h̄JRM . The spatial part of the full wave function is the product ψCMψRM and
the total-angular-momentum quantum number is J = JCM + JRM where JCM is the quantum
number for CM angular momentum

The molecular behaviour of the system in the high-angular-momentum limit becomes
evident on simplifying equation (9). Putting u(r) = √

rφ(r) (the factor
√
r is suggested by

the form of the area element in polar coordinates) leads to

−h̄2

4m∗
d2u

dr2
+

[
L2 − h̄2/4

4m∗r2
+ m∗#2r2 +

e2

8πεε0r
+
ωcL

2

]
u(r) = ERMu(r). (10)

In the large-angular-momentum limit the centrifugal potential, L2/4m∗r2, rapidly becomes
large as r becomes small and the quantum ground state is fairly well localized about the
minimum of the total potential. Therefore a good approximation to the ground state can be
obtained by Taylor expanding the potential about its minimum. The −h̄2/(16m∗r2) term can
be neglected and the position, a, of the minimum is given by(

L

2m∗a2

)2

+
e2

8πεε0

1

2m∗a3
− #2 = 0. (11)

This equation is the same as the equation that determines the radius of the minimum-energy
classical configuration in which the two electrons move in circular orbits while remaining
diametrically opposite each other (see the appendix). If the quantum state is strongly localized
about the classical configuration, the corresponding physical picture is that of a ‘diatomic
electron molecule’ that vibrates and rotates inside the quantum dot.

The ground-state energy of the electron molecule is found by substituting the Taylor
expanded potential into equation (10). Thus the vibrational states satisfy the harmonic oscil-
lator equation: [−h̄2

4m∗
d2

dξ 2
+ E0 + m∗ω2

1ξ
2

]
u(ξ) = ERMu(ξ) (12)

where ξ = r−a,E0 is the classical orbit energy,ω2
1 = ω2

r +3#2 andωr = L/(2m∗a2(L)). The
oscillator frequency, ω1, is identical to the vibration frequency of the classical perturbed orbit
(see the appendix). Strictly speaking, the equation has to be solved subject to the boundary
condition that φ(r) remains finite as r → 0. However, this boundary condition is satisfied to
a good approximation by the usual harmonic oscillator states because large L corresponds to
large a so the amplitude of an oscillator state centred on a is negligible at the origin. Thus the
approximate ground-state energy is

E = ECM + ERM + g∗BµBSz = ECM + E0 +
(
n + 1

2

)
h̄ω1 + g∗BµBSz (13)
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where n is the number of oscillator quanta and the last term is the Zeeman energy. The
approximate ground-state energy is just the sum of the classical energy, the quantum zero-
point energy associated with the RM and CM motion and the Zeeman energy. The terms
neglected in the Taylor expansion and the correction to the centrifugal potential are of order
1/

√|L| or smaller. Thus the approximation should describe the physics reasonably well in the
large-angular-momentum limit.

It is instructive to consider what happens when the magnetic field becomes large. In
this case high-angular-momentum states occur as absolute ground states because the classical
minimum energy depends on L. The L-value that minimizes the classical energy increases
withB (see the appendix); consequently the J -value of the quantum ground state also increases
with B. It is shown in the appendix (equation (A.5)) that the classical angular momentum, L∗,
that minimizes E0 is given by

L∗3/2 = 1

16πεε0

√
2m∗#

(# − ωc/2)
. (14)

In quantum mechanics the J -value must be an integer and one of the two integers closest to
−L∗/h̄ is a good approximation to the ground-state J -value. The classical L∗-value increases
monotonically with B and this results in a step-like increase of the quantum J -value. Thus the
high-angular-momentum states occur as absolute ground states when the magnetic field is large.
In the large-JRM and large-B limit, ωr ∼ #, so

√
ω2
r + 3#2 ∼ 2# ∼ ωc and the oscillator

length scale λ2 = h̄/2m∗# becomes small. This means that the potential in equation (10)
acquires a deep minimum as B becomes large and the approximation leading to equation (12)
becomes very good. Thus the electrons are strongly localized around the classical orbit and
this is consistent with the general idea that the physics simplifies in the large-B limit when
the cyclotron frequency is large and the cyclotron length is small. The physical picture of an
electron molecule is very accurate in this limit.

The molecular picture gives some insight into the abrupt changes in dot radius shown
in figure 3. The classical orbit radius is proportional to

√
L (see the appendix) so it jumps

when the angular momentum increases abruptly. When the quantum state is localized about
the classical orbit the jump in the dot radius drives an increase in the effective dot size.
This effect is certainly found in numerical studies of few-electron systems and may be
related to the charge redistributions found experimentally by Oosterkamp et al [55]. Another
interesting consequence of the molecular picture is that the angular momentum transitions
become regularly spaced in the strong-field limit (see the appendix) for special combinations
of confinement and interaction potentials, such as r2 confinement and 1/r interaction. It may
be possible to use this effect to probe the potential in a real dot [83].

The possible values of J are restricted to those compatible with the total spin because the
two-electron state formed from the product of RM, CM and spin states has to be anti-symmetric.
The CM ground state always has JCM = 0 and is symmetric. The RM state is symmetric when
JRM is even and anti-symmetric when JRM is odd. Thus spin-polarized (S = 1) ground states
must have odd values of J and spin-unpolarized (S = 0) states must have even values. These
are the magic numbers for the two-electron system. When the magnetic field is increased the
J -value increases and, in addition, the system undergoes singlet–triplet transitions until the
field is so strong that the Zeeman energy makes spin-polarized states energetically favourable.

4.2. Quantum excited states

The two-electron system has CM and RM excitations. The CM excitation energies are identical
to the Fock–Darwin excitation energies and can be measured in far-infra-red (FIR) optical
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absorption experiments. There are two types of low-lying RM excitation. One is accompanied
by a change in RM angular momentum, 1JRM �= 0, and the other has 1JRM = 0. Roughly
speaking, the 1JRM �= 0 excitation is an angular excitation while the 1JRM = 0 excitation is
a radial excitation and the corresponding molecular picture is that of rotational and vibrational
excitations respectively. The molecular vibration energy is h̄ω1 while the rotational energy is
found from the difference of the energies of a ground state and an absolute ground state. A
peculiar feature of the rotational excitations of the two-electron system is that odd values of
1JRM are impossible unless the spin state also changes. In contrast, when N > 2, excitations
with arbitrary values of 1JRM �= 0 are possible without a change of spin.

4.3. Accuracy of the molecular picture

Figure 6 (top frame) shows ground-state energies for two spin-polarized electrons. The solid
line shows the results of the molecular approximation and the diamonds give the results of
the exact numerical diagonalization. The remaining lines show the classical energy and the
sum of the classical energy and quantum zero-point energy—the zero-point energy is the
dominant component in the very strong-field regime. It is clear that the exact and approximate
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energies agree surprisingly well even in the small-angular-momentum regime. They are within
0.002 meV for J = 1, B = 0 T and within 0.0002 meV for J = 13, B = 20 T. For compar-
ison the numerical accuracy is about ±0.002 meV for J = 1, B = 0 T and ±0.000 001 meV
for J = 13, B = 20 T. The bottom frame of figure 6 shows the exact ground-state J -value
compared with the approximate value determined from equation (14). Again, it is clear that
the molecular and exact results agree well. The transition fields are well reproduced and the
spacing of the transition fields is nearly regular, in agreement with the general discussion after
equation (14)—the equation gives a transition field spacing of 3.32 T while the numerically
calculated spacing is 3.2 ± 0.1 T. The lowest RM excitation energy, 1E, with 1JRM = 0
is shown in figure 7. The top frame shows the excitation energy as a function of JRM at
B = 20 T and it can be seen that the numerical and molecular results agree well in the large-
JRM limit. They are within 0.01 meV for JRM = 9 and 0.002 meV for JRM = 19. The bottom
frame shows the excitation energy for J = 19 relative to the non-interacting excitation energy,
i.e. 1E − 2h̄#, as a function of magnetic field. The two energies are within about 0.002 meV
throughout the field range.
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One reason for the astonishing accuracy of the molecular picture is that the cubic term in
the Taylor expansion of the potential is of odd parity. Thus it does not affect the energy to first
order in perturbation theory and the lowest-order corrections to the energy are of order 1/|L|,
rather than 1/

√|L|. These corrections come from the second-order perturbation due to the
cubic term in the Taylor expansion and the first-order perturbation due to the quartic term. To
evaluate the energy to order 1/|L| it is also necessary to include the −h̄2/(16m∗r2) correction
to the centrifugal potential because this is of order 1/a2 and hence of order 1/|L|. After some
tedious algebra it can be shown that, for JRM �= 0, the corrected excitation energy is 1E + δE,
where

δE = 3h̄ωr

4J ′

[
3ω2

r + 2#2

ω2
r + 3#2

((
n +

1

2

)2

+
1

4

)
− 5

(
ω2
r + #2

ω2
r + 3#2

)2((
n +

1

2

)2

+
7

60

)]
(15)

and J ′ =
√
J 2
RM − 1/4. Clearly, the correction to 1E is the difference of two terms which

are of similar magnitude. In the large-JRM and large-B limit the two terms partly cancel and
δE approaches h̄ωc/8|JRM |. The accuracy of the molecular picture is probably related to this
cancellation but the effect of higher-order corrections remains to be investigated.

5. Theory of electron molecular states

The analysis of the two-electron system has led to the physical picture of the electron molecule
and shown that an approximation based on a harmonic expansion of the potential about the
classical orbit radius works extremely well in the large-JRM and large-B limit. This section
is concerned with generalizing the picture to more electrons. It turns out that an equally
accurate picture can be developed for up to at least six electrons but this requires some new
concepts which are not needed to deal with the two-electron system. For instance, a special
moving reference frame is needed in the N -electron case and the vibrational motion is affected
by Coriolis forces. In addition, larger systems tend to have multiple potential minima and
this affects the physics. Further, electron states must be anti-symmetric to satisfy the Pauli
principle but an arbitrary product of CM, RM angular momentum, vibrational and spin states
is not necessarily anti-symmetric and a group theoretical procedure is needed to identify the
combinations of states that can be anti-symmetrized. An interesting feature of larger systems is
that the combination of the spatial symmetry of the ‘electron molecule’ and the anti-symmetry
required by the Pauli principle leads directly to magic number states and generally enriches
the physics.

5.1. The Eckart frame

‘Molecular states’ are expected to be strongly localized about the classical minimum-energy
orbit and are expected to have some symmetry. For example, the two-electron system has
two electrons orbiting diametrically opposite each other and thus has twofold symmetry when
viewed in a rotating frame. Similarly, in the three-electron minimum-energy orbit the electrons
are at the corners of a rotating equilateral triangle. This raises the question of a suitable
reference frame for the general N -electron case. Coriolis forces normally appear whenever
motion is treated in a moving frame, although the two-electron system is an exceptional
case where they do not affect vibrational motion. The presence of Coriolis forces leads to
a Hamiltonian in which coordinates and momenta are coupled. It is desirable to use a frame in
which this coupling is minimized and a suitable choice is the Eckart frame which has long been
used to study the vibrational states of ordinary molecules [83, 95]. Recently, a geometrical
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interpretation of the Eckart frame has been given which is based on the use of a gauge potential
to describe the internal degrees of freedom of a molecule [96].

The Eckart frame is designed to make the angular momentum associated with vibrations
about the classical minimum vanish to first order in displacements from the classical equil-
ibrium positions, ai , that minimize the classical energy. This leads to the Eckart condition:∑

i

ai × r′
i = 0 (16)

where the r′
i are positions relative to the CM and all vectors are in the Eckart frame. The

special feature of the Eckart frame is that the coordinate–momentum coupling terms in the
RM Hamiltonian are of second order in the displacements.

The classical RM Hamiltonian can be expressed in any coordinates, but in molecular
physics, normal coordinates, Qi , are often employed, so that the displacement from the
equilibrium position is ρi = ∑

j QijQj where the Qij are elements of the matrix that relates
Cartesian and normal coordinates. It is convenient to use the same coordinates to study electron
states and the classical Eckart frame RM Hamiltonian can be expressed exactly in terms of
them:

HRM = 1

2
µ(LRM − Lv)

2 +
1

2m∗

2N−3∑
k=1

P 2
k + V +

ωc

2
LRM (17)

where LRM is the RM angular momentum,

Lv =
∑
k

ZkPk Zk =
∑
ij

(Qij × Qik) · k̂Qj

and

µ = I0

/(
I0 + m∗ ∑

ij

ai · QijQj

)2

.

Here Pj is the momentum conjugate to Qj , I0 is the equilibrium moment of inertia and V is
the total potential (including confinement and interaction terms together with a term quadratic
in the magnetic vector potential). The quantity Lv is an angular momentum associated with
vibrational motion and it involves products of coordinates and momenta. The RM Hamiltonian
is independent of the normal coordinates for CM and rotational excitations and involves only
2N − 3 coordinates. One more coordinate is needed to describe the relative motion fully and
this is an Euler angle, χ , that gives the orientation of the Eckart frame.

The quantum mechanical Eckart frame Hamiltonian is derived from the classical one by
applying the Podolsky procedure (as described by Kemble [97], for example). The trans-
formation to normal coordinates introduces a Jacobian into the normalization integral but it is
more convenient [97] to have a wave function that both obeys an eigenvalue equation of the form
HRM( = E( and is normalized with respect to the volume element dχ dQ1 · · · dQ2N−3.
Some lengthy manipulations are needed to eliminate the Jacobian and a consequence of them
is that the quantum mechanical Eckart frame RM Hamiltonian has an additional potential term,
−h̄2µ/8, which is called the Watson term. The elimination of the Jacobian is analogous to
the substitution u = √

rφ used to derive equation (10), the transformed radial equation in the
two-electron case, and the Watson term is analogous to the centrifugal potential correction in
this equation. In fact, the only non-trivial normal mode in the two-electron case is radial and
the two-electron Eckart frame Hamiltonian is identical to the two-electron RM Hamiltonian in
equation (10). In general, the Watson term is of order 1/|LRM |, so can be neglected to lowest
order. The Podolsky procedure then gives a quantum mechanical Eckart frame Hamiltonian
that is the same as the classical one, equation (17), except that momenta are replaced by
operators.
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5.2. Equilibrium positions

The equilibrium positions can be found by setting the linear momenta, Pj , in equation (17) to
zero and minimizing the resulting effective potential. The condition that the minimum occurs
when all the displacements are zero leads to the equations

m∗L2
RM

I 2
0

ai − ∇iV
∣∣
r′
i=ai

= 0. (18)

These equations are similar to the equations that define Lagrangian orbits in celestial mechanics
[99]. They can be solved to find the equilibrium positions of arbitrary numbers of electrons
but the equilibrium positions for small numbers of electrons can be found in a simpler way.
By symmetry, the net force on each electron is in the radial direction when the electrons
are symmetrically distributed around a ring. Thus each electron moves in a circular orbit
and the equilibrium configuration is a rotating symmetric polygon, for example a triangle for
three electrons or a square for four electrons etc (see figure 5). As the electron number
increases it becomes energetically favourable for one or more electrons to be inside the
polygonal ring. This first happens for six electrons and the resulting configuration consists
of a pentagon with an electron at the centre. When the electron number is increased further
very complicated configurations occur in which the electrons are arranged in concentric shells.
These configurations have been studied as a function of electron number by various numerical
methods [85, 100–102] and some general analytic results are also available [83, 103]. As the
electron number becomes large, the energy of the system has multiple minima which are very
close in energy and special techniques are needed to locate the global minimum [101, 102].

5.3. Vibrational motion

The classical Hamiltonian, H ′, for the vibrational motion about the steady-state rotation is
found by Taylor expanding the Eckart frame RM Hamiltonian, which is exact, about one of the
equilibrium configurations. Retaining terms up to second order in momenta and coordinates
leads to the following Hamiltonian energy relative to the classical minimum energy:

H ′ = 1

2m∗

2N−3∑
j=1

P 2
j +

2N−3∑
j=1

2N−3∑
k=1

CjkQjPk +
m∗

2

2N−3∑
j=1

ω2
njQ

2
j (19)

where

Cjk ≡ (−LRM/I0)
∑
i

Qij × Qik · k̂

is a Coriolis coupling coefficient and ωnj is the frequency of the j th normal mode. In the
strong-field limit, LRM/I0 ∼ ωc/2, so the Coriolis coupling coefficients are large and it is
essential to retain the coordinate–momentum coupling terms to obtain accurate results. The
higher-order terms in the Taylor expansion are of order 1/

√
LRM or smaller, so the molecular

picture is particularly accurate when the angular momentum is large.
The frequencies of the vibrational motion are found by assuming harmonic time dep-

endence of the normal-mode amplitudes, Qj , and conjugate momenta, Pj . This leads to an
eigenvalue equation that gives the classical vibrational modes and frequencies [98, 99]. The
quantum vibrational states are found by replacing the coordinates and momenta in equation (19)
with operators obeying canonical commutation relations. A canonical transformation of the
resulting quantum Hamiltonian leads to a Hamiltonian of the form

∑
j h̄ωj (a

†
j aj + 1/2),

where the ωj are the vibrational frequencies and the a†
j and aj , respectively, are raising and

lowering operators [83]. Thus the quantum vibrational states are expressed in terms of the
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raising operators acting on the vibrational ground state. This is true for all electron numbers
and enables the quantum vibrational states to be written down when the classical vibrational
modes and frequencies are known. In general, these modes have to be found numerically but
an analytic solution is available for the three-electron case [83, 84].

5.4. Permutational symmetry

Anti-symmetric electron states are constructed by applying the anti-symmetrization operator to
rotational–vibrational states. There areN ! equilibrium configurations, each corresponding to a
different permutation of the electrons. Some of these configurations are connected by rotations
but others are not. For example, equilateral-triangular configurations of three electrons with
vertices labelled in cyclic order, like 1

2
3 and 3

1
2, can be rotated into each other but it is

not possible to rotate 1
2

3 into 2
1

3. The configurations that cannot be rotated into each other
are called symmetrically equivalent. A harmonic expansion can be done about each of the
symmetrically equivalent configurations and the resulting quantum states are degenerate. In
reality tunnelling among symmetrically equivalent states breaks the degeneracy but this effect
is small in the large-angular-momentum limit when the states are strongly localized. In this
case good approximate electron states can be constructed by anti-symmetrizing a rotational–
vibrational state localized about any one of the symmetrically equivalent minima.

In the harmonic approximation, and before anti-symmetrization, the rotational–vibrational
states have the general form

( = ψCM exp(−iJRMχ)fJRM,n1,...,n2N−3(Q1, . . . ,Q2N−3)ψspin(Sz). (20)

The factors are states associated with various degrees of freedom: ψCM is the CM wave
function; exp(−iJRMχ) is the wave function for rotation about the CM; f is a vibrational wave
function with n1, . . . , n2N−3 the numbers of quanta in each vibrational mode; ψspin is the spin
function and Sz is the z-component of the total spin, S. In general, the anti-symmetrized states
can be written in the form Â(, where Â is the anti-symmetrization operator. However, not every
rotational–vibrational state can be used to construct an anti-symmetric state because there are
some quantum number combinations for which Â( is exactly zero. To find the quantum states
of the N -electron molecule it is necessary to determine the quantum number combinations for
which Â( is not zero. The total energy of these states is the sum of the classical equilibrium
energy and the energies corresponding to the various factors in equation (20). The resulting
equation for the total energy is the many-electron analogue of equation (13), that is

E = ECM + E0 +
2N−3∑
i=1

(
ni +

1

2

)
h̄ωi + g∗µBBSz. (21)

Thus the total energy can be found very simply once the allowed combinations of quantum
numbers have been identified.

The physics of the electron molecular ground-state energy is determined by whether
a ground vibrational state can be used to construct an anti-symmetric state. If the anti-
symmetrized ground rotational–vibrational state is non-zero, the electron molecular state will
have the lowest energy possible and will approximate one of the magic number ground states.
Otherwise the electron molecular state must have some additional energy because an excited
vibrational state has to be used to form the lowest-energy anti-symmetric state. It turns out
that ground vibrational states only lead to anti-symmetric states when JRM takes one of the
magic values. This remarkable finding is consistent with the observation made earlier that the
magic numbers reflect the symmetry of the classical equilibrium configurations.

The reason why particular angular momenta are associated with the point symmetry of
particular ‘electron molecules’ is that there are some special permutations that are equivalent
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to rotations. The question of whether anti-symmetrization of ( gives a zero or non-zero result
can be decided by considering the sub-group of these special permutations, although all N !
permutations are needed to construct the anti-symmetric state. In general, a permutation of
the laboratory frame electron coordinates has a very complicated effect on the Eckart frame
coordinates, χ and Qi . However, the effect of the special permutations is just to rotate the
Euler angle χ and to rotate and permute the Eckart frame displacements. The rotation of χ
changes ( by a phase factor and an anti-symmetric state can only be constructed if the product
of this phase and compensating phases from the vibrational and spin factors is ±1, depending
on whether the permutation is odd or even. The phase factors are determined by the point
symmetry of the equilibrium configuration; hence the magic angular momenta are a direct
consequence of symmetry.

In general, some group theory is needed to determine the phase factors, but the physics
can be illustrated with the special case of the three-electron, spin-polarized ground state which
can be treated without resort to the general procedure. In this case, the classical minimum-
energy configuration is equilateral triangular and the special permutations are equivalent to
threefold rotations, for example (123). The vibrational ground state is symmetric under these
rotations while the CM ground state and spin state are symmetric under all permutations.
The symmetry properties are therefore determined solely by the angular momentum factor
exp(−iJRMχ). The permutations that are equivalent to threefold rotations have even parity,
so the angular momentum factor must be invariant under them if the electron ground state is to
be anti-symmetric. This restricts JRM to multiples of 3 and, because JCM = 0 in the ground
state, the total J must also be a multiple of 3 as found in the numerical calculations leading to
figure 3.

To anti-symmetrize the rotational–vibrational states it is convenient to choose spin
functions that change phase under the cyclic permutations that are equivalent to rotations.
For example, when N = 3 and Sz = 1/2 and the classical minimum has threefold symmetry,
a suitable spin function is

|↑↑↓〉 + ε|↓↑↑〉 + ε2|↑↓↑〉
where ε = exp(2π iks/3), ks can take the values 0, 1, 2 and the positions of the arrows indicate
that the spin function is associated with triangular symmetry. Analogous spin functions can
be constructed for larger numbers of electrons. For m-fold symmetry the phase factor is
ε = exp(2π iks/m) and ks is an integer in the range 0 � ks � m− 1. It can be shown [83] that
the vibrational states also change phase under cyclic permutations. The phase change for the
ith vibrational state can be characterized by an integer kv(i) that is analogous to ks and lies in
the range 0 � kv(i) � m − 1. Group theoretical analysis [10, 83, 84] then leads to the result
than an anti-symmetric state can only be constructed when JRM , ks and the numbers of quanta
ni in each vibrational mode satisfy

JRM + ks +
2N−3∑
i=1

nikv(i) ≡
{

0 mod m m odd

m/2 mod m m even
(22)

and this equation gives all the magic numbers that are found in numerical calculations for
electron numbers up to 7.

6. Physics of few-electron molecules

The pair correlation functions discussed in section 3.4 and the analysis of the two-electron
system given in section 4 indicate that the electron molecular picture is accurate in the limit
of strong magnetic field. This is confirmed in the present section by comparing approximate
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and exact results for ground-state and excitation energies of a few electrons in a GaAs dot with
h̄ω0 = 4 meV in a 20 T magnetic field. The physics develops subtly with electron number
as the effective potential energy of the system acquires multiple minima. It is particularly
interesting to see how different aspects of the physics emerge as electrons are added to the
system one by one.

6.1. Ground states

The three-electron system is the smallest for which the Eckart frame approach is needed
[10, 83, 84]. Ground-state energies calculated from equation (21) are shown in figure 8 for
S = 3/2 (upper frame) and S = 1/2 (lower frame). Small oscillations in the ground-state
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Figure 8. Exact ground-state energies of three interacting electrons for h̄ω0 = 4 meV compared
with energies based on the molecular picture. The diamonds and plus signs give the energies and
the lines are to guide the eye. The dashed line, labelled minimum, is the sum of the classical energy
and the quantum zero-point energy of the molecular system.
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energy, which occur because anti-symmetric states cannot be constructed from molecular
ground states, are clearly visible in both the molecular and exact results for both values of
the total spin. The molecular and exact results are almost indistinguishable throughout the
J -range when S = 1/2 and for J greater than about 10 when S = 3/2. For J � 30 the results
typically agree to about three parts per million [83].

The molecular picture also describes the four-electron ground states very well. Ground-
state energies for all three possible values of the total spin are shown in figure 9. Small
oscillations in energy are again evident and the molecular and exact results are indistinguishable
on the scale of the figure when J � 22. When J becomes very large the molecular results
become very accurate; for example, the agreement for the S = 0 ground-state energy at J = 34
(not shown in the figure) is about 0.003%. The four-electron system is the smallest for which
there is numerical evidence for tunnelling between symmetrically equivalent minima [83]. One
prediction of the anti-symmetrization procedure for constructing molecular states is that there
are degenerate levels with different values of S, for example, the ground states with S = 0 and
S = 2 when J ≡ 2 mod 4 and S = 0 and S = 1 when J ≡ 0 mod 4. Numerical results show
that these levels are split but the splitting decreases as J increases and eventually becomes
smaller than the Zeeman spin splitting. Thus the high field suppresses tunnelling between
symmetrically equivalent minima.
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Figure 9. Exact ground-state energies of four (S = 0) and five (S = 5/2) interacting electrons
for h̄ω0 = 4 meV compared with energies based on the molecular picture. The circles give the
energies and the lines are to guide the eye.

The spin-resolved pair correlation function [104,105] of the four-electron system at S = 0
has a very interesting structure (figure 10). The magic numbers in this case are multiples of 2 but
the spin correlation pattern alternates between two types depending on whetherJ ≡ 0 mod 4 or
J ≡ 2 mod 4. For J ≡ 2 mod 4, nearest-neighbour sites tend to have opposite spins but they
tend to have like spins when J ≡ 0 mod 4 and this is a consequence of the anti-symmetrization
condition, equation (22). Anti-symmetry requires that ks = 0 when JRM ≡ 2 mod 4 and
ks = 2 when JRM ≡ 0 mod 4. The way this affects the spin correlation can be understood
by rewriting the spin states in terms of RVB (resonating valence bond) states [106]. These
states were originally conceived for lattice systems, and are S = 0 basis functions constructed
by covering the lattice with spin-singlet pairs like (1/

√
2)(|↑↓〉 − |↓↑〉). Explicit forms of
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J=10 J=12 J=14 J=16 J=18

Figure 10. Spin-resolved ground-state pair correlation functions for four interacting electrons with
S = 0 and h̄ω0 = 4 meV. The contour plots cover an area of 12λ × 12λ.

these states for small numbers of electrons can be found in the literature [107] and appropriate
products of them are known to span the S = 0 subspace [108, 109]. In the four-electron case
the spin functions characterized by ks are, except for a normalization factor:

ks = 0:
∣∣∣↑↑
↓↓

〉
+

∣∣∣↓↓
↑↑

〉
+

∣∣∣↑↓
↑↓

〉
+

∣∣∣↓↑
↓↑

〉
− 2

[∣∣∣↓↑
↑↓

〉
+

∣∣∣↑↓
↓↑

〉]
(23)

ks = 2:
∣∣∣↑↑
↓↓

〉
+

∣∣∣↓↓
↑↑

〉
−

∣∣∣↑↓
↑↓

〉
−

∣∣∣↓↑
↓↑

〉
(24)

and in the singlet pair covering representation they become

ks = 0: −
(25)

ks = 2: + ≡ ��
��❅❅
❅❅ (26)

where ≡ (1/
√

2)(|↑↓〉 − |↓↑〉) represents a spin-singlet pair [104, 105]. The tendency
for opposite spins to occur at opposite corners of the square for J ≡ 0 mod 4 is consistent
with equation (26). For larger numbers of electrons it is possible to express the spin states
in terms of RVB states but the interpretation of the spin-resolved pair correlation function is
complicated by the near-degeneracies which occur when tunnelling between symmetrically
equivalent configurations is small.

The five-electron system is the smallest for which the effect of competing potential minima
is apparent [104]. In this case there are two different classical equilibrium configurations. The
global minimum configuration is pentagonal but there is a local minimum configuration which
consists of a square with one electron in the centre. Both configurations must be taken into
account to calculate the energy as a function of J in the molecular picture. The ground-
state energy, found by taking the lowest of these two energies, is shown in figure 9. The
main sequence of minima at J ≡ 0 mod 5 corresponds to the pentagonal configuration (filled
arrows) but it is accompanied by subsidiary minima at J ≡ 2 mod 4 which correspond to
the square configuration (open arrows). The absolute ground state always corresponds to the
pentagonal configuration and at J = 40 the agreement with the exact-diagonalization results
is better than 0.2%.

The six-electron system is probably the most interesting of all because there are some
subtle effects which determine its ground state. Contrary to intuition, the classical hexagonal
ring is unstable with respect to a distortion in which alternating electrons move inwards and
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outwards (figure 11, lower frames). Thus there are two degenerate threefold minimum-
energy configurations instead of one sixfold configuration. There is also a pentagonal
minimum-energy configuration and this is the global minimum configuration. However,
the energy difference between the two configurations is relatively small—about 0.57 meV
when h̄ω0 = 4 meV and the magnetic field is 20 T. The energy of the distorted hexagonal
configuration as a function of the distortion is shown in figure 11 (upper left frame). The
energy of the threefold minima is just 1 µeV less than that of the hexagonal ring and special
care is needed to find them numerically [104]. At first sight, the existence of the threefold
minima seems inconsistent with the magic numbers of the six-electron system, some of which
correspond to sixfold symmetry [81,83]. One particularly interesting feature of the six-electron
system is the way in which the sixfold symmetry emerges when the system is treated quantum
mechanically.
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Figure 11. Potential energy as a function of distortion (top left frame), the form of distortion
(bottom frames), and ground-state energies of six interacting electrons for h̄ω0 = 4 meV and
S = 3. The circles give the energies and the lines are to guide the eye. The inset to the top left
frame gives the potential energy for a vibrational mode whose displacement pattern is the same as
the distortion pattern.

To understand how the sixfold symmetry is recovered, consider the ground state of the
double minimum associated with the distortion. This state can be approximated variationally
as a superposition of states localized on the two degenerate threefold minima. Suppose a
wave function, φ, that is localized about one of these minima has been found. Then a wave
function localized about the second minimum has the form R6φ, where R6 is the operator for
a 2π/6 rotation. (The states R3

6φ and R5
6φ are also localized about the second minimum but

are not independent of R6φ.) A variational approximation to the ground state of the distorted
system is the symmetric state ψ = φ + R6φ. The rotational–vibrational state is therefore
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exp(−iJχ)(φ + R6φ) and under a 2π/6 rotation this transforms like

R6 exp(−iJχ)(φ + R6φ) = exp(−2π i/6) exp(−iJχ)(R6φ + R2
6φ)

= exp(−2π i/6) exp(−iJχ)(φ + R6φ)

where the last step follows from the fact that the ground state in the threefold minimum is
invariant under threefold rotations. Thus ψ transforms under rotations like a sixfold state.

The variational approach gives one way of calculating approximate energies of the six-
electron system but it is rather tedious. In practice, it has been found that an even simpler
approximation gives good agreement with numerical data. This is based on the observation
that the distortion of the hexagonal ring is only about 20% of the wave-function length scale, λ.
Thus the energy can be approximated by replacing the wave function for the distorted system
by one localized about the hexagonal ring. The hexagonal ring has one unstable vibrational
mode. The displacement pattern of the corresponding normal mode is the same as the distortion
pattern shown in figure 11. The potential energy as a function of this displacement from the
hexagonal position is shown in the inset to the top left frame of figure 11. This energy is
not exactly parabolic but is well approximated by a fitted parabola—the fitted parabola is also
shown in the inset and is almost indistinguishable from the true potential energy. All the
vibrational modes become stable if the true potential is replaced by the fitted parabola and
the Eckart frame theory can then be used to obtain approximate eigenstates which have the
required sixfold symmetry. This enables approximate energies to be found from the formalism
in section 5.3 but is only valid when the distortion is small. The variational approach or even
an exact solution of the Schrödinger equation for the distortional degree of freedom would be
required when the distortion is not small.

Ground-state energies for six spin-polarized electrons calculated in the molecular picture
are shown in figure 11 (top right frame) together with results from exact numerical diag-
onalization. The minima in the main series have angular momentum J ≡ 0 mod 5 (open
arrows) and correspond to the pentagonal configuration. In addition, there is a series of
minima at J ≡ 3 mod 6 which correspond to hexagonal symmetry (filled arrows). When the
angular momentum is large, J � 60, the molecular picture gives results accurate to better
than 0.4%.

The final, and most interesting, feature of the six-electron system is that it is the
smallest system for which tunnelling between symmetrically inequivalent minima is important.
Pentagonal and hexagonal symmetry are allowed to coexist when the angular momentum
satisfies both J ≡ 0 mod 5 and J ≡ 3 mod 6. Because the corresponding equilibrium
configurations have similar energies, tunnelling between them is important and the pair
correlation functions for these states are radically different from those for the molecular
states [81, 83]. This is illustrated in figure 12. The lower left frame (J = 50) is the pair
correlation function for the absolute ground state at B = 17.5 T. All the pair correlation
functions are for ground states at B = 17.5 T and the indicated values of J . The pair
correlation function at J = 51 clearly corresponds to sixfold symmetry and the one at J = 40
to fivefold symmetry. The pair correlation function for J = 45, when both fivefold and sixfold
symmetry are allowed, exhibits some loss of symmetry. The peaks on the outer ring are less
sharp than at J = 40 and J = 50 and the peak at the centre is less distinct. Clearly, the J = 45
state cannot be described as molecular and perhaps a suitable description is ‘liquid-like’. The
‘liquid-like’ states are allowed to occur only when the angular momentum is in the sequence
15, 45, 75, . . .. When these J -values are converted to effective Landau level filling factors [63]
with the aid of the formula ν = N(N − 1)/2J , it is found that the ‘liquid-like’ states occur
when ν = 1, 1/3, 1/5, . . .. That is, at the same odd-denominator fractions where fractional
quantum Hall liquids occur in bulk systems.
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Figure 12. Six-electron pair correlation functions for molecular (J = 40, 50, 51) and liquid-like
(J = 45) states. The contour plots cover an area of 22λ × 22λ.

6.2. Excited states

An N -electron parabolic dot has the same types of low-lying excitation (section 4.2) as a two-
electron parabolic dot: CM excitations, RM excitations with 1JRM �= 0 and RM excitations
with 1JRM = 0. The RM excitations are affected by electron correlation and those with
1JRM �= 0 are accurately reproduced in the electron molecular picture. This can be seen
in figures 8 to 11. There are higher-energy states with angular momenta different from that
of the absolute ground state. These excited states are CM or RM excitations relative to the
absolute ground state, or in some cases with |1JRM | > 1 combinations of both CM and RM
excitations. The electron molecular picture reproduces all these excitation energies to about
the same accuracy as the absolute-ground-state energy.

The RM excitation energies for 1JRM = 0 can be found in the molecular picture by using
the method described in section 5 to find the smallest vibrational excitation that is compatible
with anti-symmetry. Three-electron RM excitation energies obtained in this way are shown
in figure 13 for both S = 1/2 and S = 3/2 ground states [83]. The exact-diagonalization
results are absent at JRM = 10 and JRM � 8 because intra-Landau level excitations do not
exist in these cases. The exact results are broadly in agreement with the molecular ones. When
S = 1/2 the molecular picture is very good. In particular, the oscillations in the excitation
energy, which are a consequence of the anti-symmetrization condition (equation (22)), are well
reproduced. The agreement at JRM = 40 is about 3%. When S = 3/2 the molecular picture
is accurate to about 8% in the large-angular-momentum limit but at low angular momenta
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Figure 13. Exact RM excitation energies for three interacting electrons with h̄ω0 = 4 meV
compared with results based on the molecular picture. The diamonds and plus signs give the
energies and the lines are to guide the eye.

the numerical excitation energy fluctuates, although the general trend is in agreement with
the molecular results. Four-electron RM excitation energies are shown in figure 14. The
anti-symmetrization condition again leads to excitation patterns characteristic of the total spin
and these patterns occur in the numerical data. For instance, when S = 2 large excitation
energies are predicted to occur at JRM ≡ 1 mod 4 and JRM ≡ 2 mod 4 and small ones at
JRM ≡ 3 mod 4 and JRM ≡ 0 mod 4. This pattern can be seen in the numerical data when
JRM � 41. Similarly, the excitation energy is predicted to oscillate with period 4 for S = 1
and change smoothly with JRM when S = 0 and these trends occur in the numerical data when
JRM is sufficiently high. The quantitative accuracy of the molecular picture at JRM = 50 is
about 3–8%. As in the three-electron system, the molecular excitation pattern tends to occur in
the numerical data at the lowest JRM -values when the system is not spin polarized: for S = 1
the pattern occurs above JRM = 20, but for S = 2 it occurs above JRM = 40 while for S = 0
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Figure 14. Exact RM excitation energies for four interacting electrons with h̄ω0 = 4 meV compared
with results based on the molecular picture. The diamonds and plus signs give the energies and the
lines are to guide the eye.

it occurs above about JRM = 35, although the numerical data have some oscillations which
persist up to JRM = 50.

Physically, the origin of the spin-dependent excitation patterns is related to the way the
rotational, vibrational and spin states change phase under the permutations that are equivalent
to rotations. The phase changes are characterized by the quantum numbers JRM , kv and ks
respectively and the quantum number combinations for both the ground and excited states
must satisfy equation (22). Typically there are a few different spin states and a few different
vibrational states. For example, there are two different low-energy vibrational states when
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N = 4 and three different spin states when N = 4, S = 1 and Sz = 1. Usually, several
different combinations of the quantum numbers satisfy equation (22) and the excitation energy
patterns are found by looking for the quantum number combinations that correspond to the
smallest excitation energy [83].

The tendency for the molecular excitation pattern to emerge at particularly large JRM -
values when the system is spin polarized is a consequence of the fact that there is just one spin
state (with ks = 0) in this case. Consequently it is not possible to compensate for the vibrational
phase by adjusting ks and this means that the excited states have to be constructed from larger
numbers of vibrational quanta. For example, at least two quanta are required when N = 4
and S = 2. Physically, these highly excited states have a greater spatial extent than the lower
states and should be more sensitive to processes neglected in the simple molecular picture,
such as tunnelling between symmetrically equivalent minima and anharmonicity. Hence it is
quite reasonable that the molecular description of the RM excitations at low JRM -values is best
when the system is not spin polarized.

7. Discussion

The molecular picture provides an extremely good and accurate description of ground states
and low-lying excited states of few-electron quantum dots. The picture is intuitively appealing
and gives quantitative information at relatively low cost. However, the picture is not yet
complete. One of the outstanding issues is the extent to which it can describe larger systems.
Another is experimental verification.

It would be good to have a better understanding of systems with more than six electrons.
The accuracy of the molecular picture seems to be fairly independent of electron number for
up to six electrons. There is apparently a small loss of accuracy in going from two to six
electrons but the numerical results for various electron numbers have not been obtained at the
same Landau level filling factors: exact-diagonalization results for the larger electron numbers
cannot be obtained for large enough J to reach the same small filling factor, ν = N(N−1)/2J ,
as for the smaller electron numbers. The agreement of the exact-diagonalization and molecular
data for the larger electron numbers would probably improve if the exact diagonalization could
be done for large enough angular momentum. As the number of electrons increases it is likely
that effects of distortion and multiple minima, similar to those that occur in the six-electron case,
will become more important. If multiple energy minima occur, the nature of the ground state
might be determined by selection rules, similar to the rule that determines when the fivefold
and sixfold states of the six-electron system are allowed to mix. In a larger system there could
be more than two minima and this raises the interesting possibility of states where no mixing,
complete mixing or mixing of a subset of symmetry types occurs. Physically, no mixing and
complete mixing would correspond to molecular and liquid-like states, respectively, but mixing
of a subset of symmetry types would correspond to a new type of state whose physical nature
is not yet clear. As the number of electrons becomes very large, quantum Hall liquids should
be found amongst the low-J ground states while the high-J ground states are more likely
to correspond to Wigner crystals. The quantum Hall liquids only occur at odd-denominator
filling factors. It has been suggested that this could be related to symmetry effects similar to
those that determine whether the six-electron ground state is liquid-like [83]—physically the
ground state would be a liquid if it was able to explore all the potential minima. There has
been some investigation of the consequences of symmetry effects for larger systems, and they
do seem to account for the observed filling factors [110,111], but the theory involves a number
of approximations and the problem is still open to some extent.

It would also be interesting to know whether the molecular picture can account for the
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excitations of larger systems. It would probably give a good description of the rotational
excitations of molecular states but its accuracy for vibrational excitations probably depends on
how many vibrational quanta are needed to construct the anti-symmetric excited states and on
the spin polarization. For large systems having n-fold symmetry with large n, large numbers
of quanta would be needed to construct spin-polarized excited states and the accuracy of the
molecular picture could be reduced unless the angular momentum was very large.

Experimental verification of the molecular picture is a challenging task. It is difficult to
probe the pair correlation function that would give direct information about the physical state
of electrons in a quantum dot. Instead, the nature of the state has to be inferred from transport
and optical data which are sensitive to energy levels. The task is made more difficult by the
decoupling of RM and CM motion in a parabolic dot which makes it hard to probe the RM
motion which is affected by electron correlation. Thermodynamic properties are not affected
by this problem and are known to be sensitive to interactions [36, 70, 71] but are difficult
to measure experimentally. An alternative is to introduce some RM and CM coupling in a
controlled way to infer the nature of the ground state. Raman scattering [42] is one possibility.
Another is to work with laterally coupled [112] or vertically coupled dots [113–116, 119]. A
particularly interesting feature of vertically coupled dots is that molecular correlation can occur
either within each dot or across the two dots. The latter leads to three-dimensional electron
molecules which have been investigated with quantum [116–119] and classical [120, 121]
mechanics. If the confinement energy, h̄ω0 in each of the two dots is different, the RM and
CM motions couple and FIR spectra are sensitive to interactions [116,119,122] and could give
information about the state of the dot. The effect could be enhanced by deliberately increasing
the confinement energy difference. Another way of manipulating a dot to probe its state might
be to apply a lateral shearing electric field with some external electrodes. Increasing the electric
field would crack the electron molecule and abrupt changes in its form would lead to abrupt
changes in the addition energy which could be observed in transport experiments. Classical
Monte Carlo calculations indicate that molecular and liquid states could be distinguished in
this way and there would be a unique signature for each electron number [123]. Finally and
very speculatively, it might be possible to couple electrons in a pillar dot to the vibrational
modes of the pillar.

Probably the most challenging experimental task of all would be to detect the oscillatory
form of the vibrational excitations as a function of RM angular momentum. This would require
fairly low-energy excitations to be probed and, in addition, a way of preparing the system in
a non-magic ground state. This seems very difficult but if it could be achieved it would give
direct evidence for a molecular states because the predicted excitation patterns are a direct
consequence of the electron molecular picture.
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Appendix. Classical treatment of two interacting electrons

This appendix is concerned with the interesting and important low-energy circular orbits of
two interacting point charges, which can be found by elementary methods [59]. It is possible
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to find general expressions for all the RM orbits but these expressions involve elliptic integrals
and are somewhat uninformative [124].

In the minimum-energy configuration of the two-electron system, the centre of mass is
at rest in the centre of the dot and the electrons move in circular orbits while remaining dia-
metrically opposite to each other. The effective Hamiltonian, Hco, that determines the orbit
radius is found from HRM (equation (8)) and is given by

Hco = L2

4m∗a2
+

e2

8πεε0a
+ m∗a2#2 +

ωc

2
L (A.1)

where a is the orbit radius and L = ∑
i (ri × pi ) · k̂ is the total angular momentum. The orbit

radius as a function of L and B can found by minimizing Hco, or directly from Newton’s laws.
For each magnetic field, there is a family of circular orbits, whose radii are related to L via(

L

2m∗a2

)2

+
e2

8πεε0

1

2m∗a3
− #2 = 0. (A.2)

One of these orbits minimizes the total energy and this orbit can be found by solving
equation (11) to find a(L) and then minimizing the total energy with respect to L.

The exact value of a can be found numerically but to understand the physics it is better to
look at the large-L limit. In this case a is approximately given by

a =
√

|L|
2m∗#

+ O

(
1

|L|
)
. (A.3)

Thus a increases with |L| at fixed B. In addition, it decreases with B at fixed L because #
increases with B. The total energy in the same approximation is

E0 �
(

|L|# + L
ωc

2

)
+

e2

8πεε0

√
2m∗#
|L| + O

(
1

|L|2
)
. (A.4)

The first term is similar to the energy of a Fock–Darwin state, while the second is a Coulomb
correction. The total energy as a function of L always has a minimum. To examine this, it is
convenient to use h̄ as the unit of angular momentum. The substitution L = −h̄J defines a
classical J -value which is a real number. The classical J -value, J ∗, that minimizes E0 is

J ∗3/2 = 1

16πεε0

√
2m∗#

h̄3/2(# − ωc/2)
(A.5)

and this is a monotonically increasing function of B. In the high-field limit this becomes

B = m∗

e

[
e2

16πεε0

√
m∗

h̄3/2ω2
0

]−2/3

J ∗ (A.6)

so J ∗ is linear in B. The physics of the classical ground state is now clear: the angular
momentum of the minimum-energy orbit increases with field and, in the high-field limit, both
the optimalL and# increase linearly withB, so the optimal orbit radius approaches a constant.

The increase of the classical J ∗-value is similar to the increase of the quantum ground-
state J -value but in the quantum case the J -values are restricted to integers. If this constraint
is applied to the classical system, the optimal J -value is either [J ∗] or [J ∗] + 1 where [J ∗]
is the integer part of J ∗, depending on which of these integers gives the lowest value of E0.
With this restriction, the classical system exhibits a series of transitions in which the J -value
increases in a step-like way when B is increased. In addition, a oscillates with B because a
increases abruptly whenever J increases, then decreases with a further increase of B.
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The classical treatment also gives some insight into the physics of the transitions and the
way they depend on confinement and interaction potentials. In the classical picture a transition
occurs when two orbits with different angular momenta have the same energy, that is when
E0(J, B) = E0(J + 1, B), or approximately when ∂E0/∂J = 0. This is just the condition that
defines J ∗, so the transition fields in the high-field limit can be found from equation (A.6). This
shows that the transition field is proportional to J and therefore the transitions are regularly
spaced in the high-field limit. This behaviour is quite peculiar. It only occurs for special types
of potential and the combination of r2 confinement and 1/r interaction is one of them. It is
easy to repeat the classical treatment for a general confinement potential of the form rq and
an interaction of the form r−p. In this case the approximate transition fields in the high-field
regime are given by

B = m∗

e

[
e2

16πεε0

√
m∗

h̄3/2ω2
0

]−2/3

(J ∗)(p+q)/3. (A.7)

and it is clear that the linear J -dependence only occurs when p + q = 3.
There are perturbed classical trajectories whose energy is slightly higher than that of the

circular orbits, and physically, these trajectories correspond to vibrations about the steady-state
circular motion. The two-electron system in two dimensions has four degrees of freedom and
four excitation modes. Formally, these modes can be found by applying Routh’s procedure
to analyse the perturbed motion about the steady-state orbit [98, 125], but it is easier to find
them by using physical arguments. Because the Hamiltonian separates, two of the modes are
associated with CM with and two with RM motion. One of the RM modes is rotational and
the remaining one is vibrational. These two modes are orthogonal and the rotational motion
involves purely angular displacements. Therefore the vibrational mode must be radial with
the displacements of the two electrons of equal magnitude and in opposite directions. The
effective Hamiltonian for the radial motion is therefore

H ′ = p2
ξ

4m∗ +
L2

4m∗(a + ξ)2
+

e2

8πεε0(a + ξ)
+ m∗(a + ξ)2#2 +

ωc

2
L (A.8)

where ξ is the electron displacement and pξ = m∗ξ̇ . Taylor expanding this to second order
about ξ = 0 leads to the equation of motion

ξ̈ + (ω2
r + 3#2)ξ = 0 (A.9)

where ωr = L/(2m∗a2(L)). Thus the radial mode is stable and its frequency is
√
ω2
r + 3#2.

This coincides with the frequency that appears in the Schrödinger equation for the vibrational
states (equation (12)).
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